dilluns, 22 de desembre del 2008

El rei per davant

En la posició del següent diagrama, juguen les blanques. Tenen torre contra dos peons, però el seu rei està molt lluny. Podran guanyar? O són taules? Perdre no, que les taules fàcils s'aconsegueixen amb Rxh7 i la torre defensa l'entrada del peó d'f.



Està clar que la jugada 1. Txf5+, que se'n va de les mans, no guanya: el negre juga Rg4, amenaçant la torre, i després jugarà h5. El blanc no arribarà a temps amb el rei i haurà de sacrificar la torre pel peó: taules.

Així doncs, quina és la solució pel blanc?

La solució pel blanc és acostar-se amb el rei per davant: com que el rei és la peça més lenta, el rei ha de començar a avançar més aviat, per arribar a temps de parar els peons.

Quina és la idea?

La idea (més o menys) és arribar amb el rei a f1, per parar el peó amb el rei i que la torre controli el peó d'h.

La solució és, doncs 1. Rf7 Rg4 2. Re6 h5 3. Re5 h4 4. Rd4

Mica en mica, el blanc ha aconseguit el seu objectiu: acostar el rei. De mentres, el negre ha intentat avançar els peons.



El negre podria jugar 4. ... Rf4, intentant tallar el pas del rei blanc. Però seguiria 5. Th6 Rg3 6. Re3 f4+ 7. Re2 i el rei blanc arriba a aturar el peó. Si el rei negre juga 7. ... Rg2, segueix un mat bonic: 8. Tg6+ Rh3 (amb Rh2 i Rh1 segueixen coses similars) 9. Rf3 Rh2 10. Th6 Rh3 (sinó, hi ha mats semblants) 11. Th7 Rh2 12. Txh4+ Rg1 13. Th3 Rf1 14. Th1 mat.

Tampoc serveix 4. ... f4 5. Re4 f3 6. Re3 h3 7. Rf2 i el blanc ha aconseguit el seu objectiu.

La tercera opció seria avançar més el peó d'h: 4. ... h3 5. Re3 h2 6. Tg6+ Rh3 (la única manera d'evitar l'escac per la columna h, guanyant la peça promocionada).

I ara acabem en un final de torre contra cavall, guanyat per la torre: 7. Rf2 h1=C+, és la única manera de promocionar el peó sense que el negre el guanyi fent escac per la columna h. Però el final que queda està perdut pel negre: no pot treure el cavall i defensar el mat a la vegada:



8. Rf3 Rh2 9. Tg2+ Rh3 10. Tg5 Rh2 (està clar que si 10. ... Rh4 11. Tg1 i el negre perd el cavall, i la partida). 11. Txf5 Cg3 12. Tf8 Cf1 13. Rf2, guanyant el cavall.

dilluns, 15 de desembre del 2008

Però què he fet?

En el torneig de Linares de l'any 1992 (tots érem més joves...) en Short es va trobar amb aquesta posició davant d'en Beliavsky:



Sembla que el blanc té molta avantatge, i que la victòria serà fàcil, però...

1. b5 Ab7 2. Cd5 f6+

Ara, si 3. Cxf6 Cxf6 4. Rxf6 Axg2 5. Af5 i seran taules. Però... en Short va jugar... 3. Re6??, suposo que per allò de portar el rei cap al centre.

Què va fer el negre?

El blanc està clar: donar-se cops de cap a la paret! I això que era en Short!!!

diumenge, 14 de desembre del 2008

El problema de la setmana - l'últim

Aquest és l'últim problema de l'any, i també l'últim problema que proposaré en molt de temps. Ja fa uns mesos que quan arriba el diumenge al vespre no sé quin problema posar, i n'he repetit algun, algun ha sigut molt dolent... així que em prenc un descans indefinit, després d'aquest problema. Descans de problema, que no de blog. Ja veurem la regularitat amb la que escric, però no serà un problema cada setmana.

Com que és l'últim valdrà 100 puntets... i el tancaré a final d'any (d'aquí a dues setmanes seré fora).

Es tracta de trobar una paraula, el més llarga possible, però amb restriccions: el nombre de vocals de la paraula ha de ser primer. A més, el nombre de consonants que queden a cada interval separades per vocals o al principi o final de paraula, també ha de ser primer. En cas d'empat, guanya la paraula que estigui més enrere al diccionari.

Per exemple, CASA no és vàlida, perquè tot i que té 2 (primer) vocals, al principi de la paraula hi ha una consonant sola (C), i entre les dues A hi ha també una consonant sola.

ARBRE sí que seria vàlida, perquè té 2 vocals, i entre les dues vocals hi ha 3 consonants.

BRILLA també seria correcta, perquè té 2 vocals i al principi té dues consonants, i entre les vocals també.

dissabte, 13 de desembre del 2008

El calendari de la NASA

Algú busca un calendari per l'any que ve?

Algú no en té i no sap d'on aconseguir-ne un de maco i barat?

La NASA ha creat un calendari per cel.lebrar els 10 anys del llançament de la primera peça de l'Estació Espacial Internacional. I de pas, un calendari maco i interessant :-D

dilluns, 8 de desembre del 2008

Què tal el "pont"?



Un altre còmic genial de la Courtney Gibbons.

diumenge, 7 de desembre del 2008

Com és l'òrbita de la Lluna?

Abans de mirar la solució: si demano a algú com és l'òrbita de la Lluna al voltant del Sol (he dit del Sol, no de la Terra!), com us pensareu que és?

Així?



Potser així?



O potser així?



O d'alguna altra manera?

La solució, aquí.

L'origen de la vida

I també hi ha qui creu en la panspèrmia, que és la teoria que afirma que la vida va venir de l'espai exterior en forma d'espores portades pels meteorits. Però això és trampa, perquè la pregunta seguiria sense resoldre: com es va formar la vida aquí, allà, o a on sigui?


Daniel Closa, aka Dan
100 enigmes que la ciència (encara) no ha resolt

dissabte, 6 de desembre del 2008

El problema de la setmana - suma de les potències de les seves xifres

Hi ha nombres que es poden expressar com la suma de totes les seves xifres elevades a una mateixa potència, com per exemple el 153 = 1^3 + 5^3 + 3^3.

Aquesta setmana es tracta de trobar algun d'aquests números. Quin guanya? Doncs el que tingui el producte del nombre per la potència més gran. Per exemple, en el cas del 153, el producte seria 153*3.

Repartiré 46 punts d'aquí a un parell de setmanes.

diumenge, 30 de novembre del 2008

El problema de la setmana - un nombre racional

Aquesta setmana es tracta de buscar un nombre racional.

Quines restriccions hi ha? Cap, a part de que sigui racional i que la seva expressió decimal sigui periòdica (o sigui, que hi ha algun factor al divisor que no és ni 2, ni 5).

Com es guanya? Del nombre racional, es mira el període de la seva expressió decimal. Es compten quants dígits té el període. Aquests dígits es divideixen pel nombre de divisors del numerador (exceptuant l'1 i el mateix numerador) més el nombre de divisors del denominador (exceptuant l'1 i ell mateix) més 1 (ho he canviat, si el denominador i el numerador eren primers, es dividia per 0... Gràcies, Alasanid!). Guanya el valor més gran.

Per exemple, si dic 6/9 = 0._6_, el resultat seria 1/(2+1) = 1/3.

Repartiré 45 punts d'aquí a un parell de setmanes.

dimecres, 26 de novembre del 2008

dilluns, 24 de novembre del 2008

Final Kortchnoi - Bruzon

Avui mostraré un final de partida entre Viktor Kortchnoi i Lazaro Bruzon, jugat al 2001. Partim de la següent posició, on juguen les blanques:



Taules? Està millor el blanc? Està millor el negre? Bé, de fet dient qui jugava la partida ja he donat una bona pista, però anem a veure com es va jugar aquest final.

El primer pas, consisteix a passar amb el rei, a portar el rei cap al centre, per anar cap a... bé, això ja es veurà més tard.

31. Rg3, buscant entrar per f4. Si 31. ... Re5 32. Cc6, guanyant un peó.

31. ... a5 32. Rf4

El rei ha aconseguit el que volia: arribar a f4. Ara es dirigeix a g5, per entrar pel flanc de rei. No serveix 32. ... f6 per evitar que entri per g5, ja que 33. Cb5+ Re6 34. Cc3 f5 i el rei passa igualment, amb la casella d5 pel cavall.

32. ... Ab7 33. a3 Ad5 34. Rg5



Kortchnoi ha aconseguit el seu primer objectiu, que és entrar amb el rei al flanc de rei contrari. Tot i així, sembla que el rei no podrà passar d'aquí. Però...

34. ... Re5 35. Rh6 Rf6

Sembla que el rei blanc queda atrapat, però el rei blanc segueix el seu camí!

36. Rh7 Ab7 37. Rg8 Re7 38. Rg7 Ad5



El rei blanc ha aconseguit penetrar al flanc de rei contrari, però sembla que no podrà fer res, des d'aquí. Però, un cop en Kortchnoi ja té el rei on volia, segueix una altra fase del pla, que consisteix a avançar els peons del flanc de rei. El seu rei impedeix que el rei negre pugui avançar, perquè ha de defensar el peó d'f7, i de mentres, el blanc pot anar avançant els peons sense problema.

39. f4 exf3 40. gxf3 Aa8 41. e4 Ab7 42. e5 Ad5



I ara, un cop ja ha avançat suficientment els peons del flanc de rei, el rei blanc ja no fa res al flanc de rei. Fins ara el que ha fet ha estat "entretenir" al rei negre a defensar els peons, mentre que el blanc anava avançant. Ara ja no cal entretenir més al rei negre, i per això el blanc torna a centralitzar el seu rei, mentre que a la vegada seguirà avançant els peons del flanc de rei.

Cal fixar-nos també en la posició de cavall i peó blanc: amb el cavall i el peó es tapa el pas del rei negre: el peó controla les caselles f6 i d6, mentre que el cavall controla e6.

43. Rh6 Ab7 44. Rg5 Ad5 45. f4 Ae4 46. f5 gxf5

En aquest cas, si 46. ... Axf5 47. Cxf5+ gxf5 48. Rxf5, amb el final de peons guanyat pel blanc.

47. Rf4 Rd7 48. b4 axb4 49. axb4 Ad3 50. Cxf5 Re6 51. Cg7+ Rd5



Ara sembla que el rei negre entrarà a menjar-se el peó de b i que el blanc intentarà entrar algun peó del flanc de rei. De fet, aquí el blanc ja té la partida guanyada.

52. Cxh5 Rc4 53. Rg5 Rxb4 54. Cf4 Ae4 55. h5 b5 56. e6 desviant el peó per poder tapar la diagonal amb el cavall fxe6 57. Cg6 Ra3 58. h6 b4 59. h7 b3 60. h8=D b2 61. Dc3+ Ra2 62. Dc4+ 1-0

diumenge, 23 de novembre del 2008

El problema de la setmana - un poema

I aquesta setmana... poesia! Es tracta de trobar un poema (conegut, no inventat, que es pugui trobar, en l'idioma que es vulgui) que tingui el títol molt llarg. Com decideixo si el títol és molt llarg? Doncs compto el nombre de lletres del títol, i les divideixo pel nombre de versos del poema.

Guanya, és clar, el poema que tingui la divisió més gran.

Repartiré 44 punts d'aquí a un parell de setmanes.

dimecres, 19 de novembre del 2008

How much longer is your program?

Reconec que els comics del Piled Higher & Deeper són del millor que hi ha. Però aquest de la Courtney Gibbons és simplement genial.



Sobretot les tres frases que hi ha a sota.

Worst. Question. Ever.

dilluns, 17 de novembre del 2008

Demostració del teorema de Pitàgores usant un trapezi

Hi ha moltes demostracions del teorema de Pitàgores, però aquesta que em vaig trobar l'altre dia per casualitat em va fer molta gràcia, perquè és senzilla i perquè fa servir trapezis.

La idea és partir d'un triangle rectangle, i construir un trapezi, com el de la foto (ja ho sé, no es veu gaire bé, però clicant es veu millor -tot i que una mica desenfocada...-, i no tenia ganes de fer 5 fotos...) Un cop construit el trapezi, es calcula l'àrea de dues maneres diferents: sumant les àrees dels 3 triangles, o calculant l'àrea del trapezi. I... surt el teorema de Pitàgores (com era d'esperar!!!)



Per calcular l'àrea dels triangles, els triangles A i B són iguals, i la seva àrea és ab/2. El tercer triangle també és rectangle, perquè dels tres angles que hi ha a la base, un és un dels angles aguts del triangle original, el segon és l'altre angle agut. I, per tant, entre els dos sumen 90 graus. El tercer angle també ha de ser de 90 graus, i per tant el triangle és rectangle (i l'àrea és catet1*catet2/2 = c^2/2).

Per calcular l'àrea del trapezi, ho faig amb el trapezi rotat 90 graus, que és com em van ensenyar a mi l'àrea del trapezi. Els dos costats són paral.lels, perquè els dos formen un angle de 90 graus amb el que abans era la base. I, gràcies a aquests angles de 90 graus, també tenim l'altura. I, aplicant la formuleta, surt que l'àrea és (a+b)^2/2.

Igualant les dues àrees, surt el teorema de Pitàgores.

diumenge, 16 de novembre del 2008

El problema de la setmana - tornem-hi amb els nombres primers!

Aquesta setmana un altre problema de jugar amb els números. Es tracta d'obtenir un nombre primer, fent servir només nombres primers, amb algunes restriccions:

- Hi ha d'haver com a mínim una multiplicació i una divisió (n'hi poden haver més)
- La resta d'operacions, només poden ser sumes i restes.
- Es poden posar tants parèntesis com es vulguin.
- No es pot repetir cap número primer (però el nombre obtingut no compta).

Guanyarà la proposta que aconsegueixi que la mitjana aritmètica de tots els nombres primers utilitzats per fer les operacions sigui mínima.

Per exemple, (7+3)*5/(41-31) = 5. I la mitjana, (7+3+5+41+31)/5 = 17.4

Repartiré 43 punts d'aquí a un parell de setmanes.

diumenge, 9 de novembre del 2008

El problema de la setmana - amb totes les vocals

Avui a les estadístiques m'he trobat algú que buscava per paraules "amb totes les vocals". Així que, aquesta setmana, es tracta de trobar una paraula que tingui totes les vocals.

Guanyarà la paraula més curta, i a igualtat de lletres, la paraula que estigui més enrere en el diccionari.

42 punts, d'aquí a dues setmanes.

dilluns, 3 de novembre del 2008

Pures o aplicades?

Tal como las caricaturizan los matemáticos aplicados, las matemáticas puras son un sinsentido intelectual abstracto en una torre de marfil sin ninguna repercusión práctica. Las matemáticas aplicadas, responden los matemáticos puros intransigentes, son intelectualmente descuidadas, carentes de rigor y sustituyen la comprensión por la acumulación de números.


Ian Stewart.
Cartas a una joven matemática.

diumenge, 2 de novembre del 2008

El problema de la setmana - amb tantes lletres com el valor

D'acord, amb el problema de fa dues setmanes em vau guanyar ben guanyada. I ara torno amb un problema similar... a veure si em podeu tornar a guanyar!

Es tracta d'escriure un número, el més gran que pogueu, que compleixi que el nombre de lletres per expressar el número sigui igual que el valor del número.

Per exemple, U seria vàlid. Dos ja no, perquè té 3 dígits, i no 2. Però també seria correcte "Vuit més dos" (10 lletres, el nombre 10).

Repartiré 41 punts d'aquí a un parell de setmanes.

dimecres, 29 d’octubre del 2008

Com es fabriquen els globus terraqüis?

Algú s'ha preguntat mai com es fabrica un globus terraqüi?

Com s'aconsegueix la forma esfèrica?

Com s'imprimeix?

Si es fa en dos hemisferis, com s'enganxen?

La resposta en el següent youtube, trobat gràcies a Microsiervos.

dilluns, 27 d’octubre del 2008

El primer vol de l'Ariane 5

Era el 4 de juny de l'any 1996, i l'Agència Espacial Europea, després de gastar-se una quantitat enorme de diners, es disposava a provar el seu nou Ariane.



Després de l'investigació, es va descobrir l'error.

Els Ariane 4 portaven en funcionament molts anys. I no hi havia hagut gaires errors. Així que els Ariane 5 van heretar força coses dels Ariane 4. Entre elles, part del software.

Una part d'aquest software feia servir una variable entera representada per 16 bits. Això vol dir que un dels bits es guardava pel signe, i amb els 15 bits restants s'escrivia la magnitud del signe. El valor de la variable podia anar des de -32767 fins a 32767. Això era suficient per l'Ariane 4, però l'Ariane 5 era més potent i... el valor d'aquesta variable es va sortir del rang dels nombres representables per la variable!

Això va ser degut a què el programa estava preparat per l'Ariane 4, i aquesta variable representava alguna variable relacionada amb la velocitat horitzontal del coet. Però l'Ariane 5 utilitzava una trajectòria diferent de les dels Ariane 4, on la velocitat horitzontal era molt més gran, i el dispositiu no la va poder emmagatzemar.

El coet va veure l'error, i va apagar el dispositiu, en comptes de continuar funcionant. Això va fer que, amb aquest dispositiu apagat, el coet explotés.

Per si no fos prou, aquesta variable estava relacionada amb un sistema de referència que es fa servir abans de que el coet s'enlairi. Si aquest procés s'hagués parat quan el coet es va enlairar, no hi hagués hagut cap problema (tot i que, després de fer aquesta afirmació, em pregunto quantes coses i amb quants errors hi ha funcionant per aquests móns de déu, que només funcionen perquè s'aturen a temps i qualsevol dia faran un pet...)

diumenge, 26 d’octubre del 2008

El problema de la setmana - braçalets i collarets

Aquesta setmana un d'aquells problemes que podeu contestar als comentaris, o si ho preferiu (per no donar ajudes a la resta de la gent), em podeu enviar la solució per mail.

Us dono material per fabricar collarets i braçalets, que heu de vendre. Podeu fabricar fins a 1 metre, comptant que cada braçalet fa 25 centímetres i cada collaret, 45 centímetres.

El preu de venda dels braçalets i collarets varia, depenent del nombre que n'hi hagi al mercat (ja se sap, la llei de l'oferta i la demanda...)

Els braçalets tenen un preu inicial de 5 euros, però per cada braçalet que es fabriqui, el preu baixa en 2 cèntims (0.02 euros, per si de cas).

Els collarets tenen un preu inicial de 10 euros, però per cada collaret fabricat, el preu disminueix 5 cèntims.

Quants braçalets i collarets fabricarieu?

D'aquí a un parell de setmanes, repartiré 40 punts, premiant a la gent que hi hagi guanyat més diners, és clar!

 Vale, m'he colat! Gràcies per avisar, Laia! Volia dir que podeu fabricar fins a 10 metres de braçalets i collarets... 


Més aclariments! Però com estic aquesta setmana!!! No m'entenc ni jo! Quan deia "per cada braçalet que es fabriqui", vol dir que si una persona fabrica 3 braçalets i una altra 5, el preu del braçalet serà 5 - 0.02*8, perquè en total s'han fabricat 8 braçalets.

A veure si ja no he comés més errors en el problema... Espero que no!

divendres, 24 d’octubre del 2008

Importància

Lo que realmente cuenta es ganar campeonatos y torneos importantes. Sólo estos triunfos pueden reservarle a un jugador su lugar en la historia. El público recordará a los grandes jugadores no debido a su ELO, sino a sus hazañas deportivas.


Efstratios Grivas
Planificación en el ajedrez moderno.

dilluns, 20 d’octubre del 2008

Reflexió, refracció i optimització

Mirant uns problemes d'optimització, avui m'he trobat una cosa curiosa, que relaciona la reflexió i la refracció de la llum amb problemes d'optimització.

Imaginem-nos, com al dibuix-esquema mal fet que he fet fa una estona (perdoneu l'ombra, és el meu braç aixecat aguantant la càmera...), la llum vol anar d'A a B, però rebotant en el mirall que hi ha a la línia inferior. La llum pot rebotar on vulgui, i pot sortir amb l'angle que vulgui, però ha de complir una condició: ha d'estar el mínim temps possible a viatjar d'A a B.

I, com que la velocitat de la llum és constant, es tracta de minimitzar la distància entre A i B.

No és difícil de veure (els quatre calculets que hi ha al full), que la derivada d'aquesta distància és cos(alpha) - cos(beta), que s'anul.la quan els dos angles són iguals. O sigui, quan la llum es reflecteix en el mirall! També es comprova fàcilment, mirant el signe de la derivada, que aquest punt és realment un mínim.

Així doncs, la reflexió de la llum, a part de complir determinades lleis físiques, també compleix que és la que fa mínim el temps que transcorre un feix de llum que surt d'una posició, rebota al mirall i arriba a una segona posició.



Molt bé, això era la reflexió. Però... què passa amb la refracció?

Doncs amb la refracció passa exactament el mateix! En aquest cas, la llum vol viatjar des d'un punt que està fora de l'aigua a un punt que està sota aigua. I vol fer-ho en el mínim temps possible. Ara no s'ha de minimitzar la distància, sinó el temps, i per això hi entren en joc les velocitats de la llum a l'aigua i a l'aire. I què passa?

Doncs que, de tots els punts on la llum podria passar de l'aire a l'aigua, amb l'angle que volgués, el que minimitza el temps que triga la llum a arribar d'un punt a l'altre és precisament l'angle amb el que es refracta la llum!



Si és que la llum és molt espavilada i ja la sabia, la forma d'anar el més ràpid possible d'un lloc a un altre! :-D

Francisco J. Rubia

Arribo a la universitat i agafo la Vanguardia, que molt amablement ens deixen cada matí. Mentre pujo les escales cap al despatx, llegeixo per sobre la contra, esperant entrar al despatx i obrir la pàgina on primer llegiré el còmic d'en Calvin and Hobbes, i després faré el problema d'escacs. Serà tot el que miraré del diari fins que arribi a casa al vespre, i el miri mentre sopo...

Però a la contra, una columna em crida l'atenció. Ajedrez, posa. Se me n'hi van els ulls...
El cerebro masculino acopia más habilidades para el juego del ajedrez...., pero mi hija me ha ganado siempre que hemos jugado.

Em guardo l'opinió per mi. Acabo de fer un problema qualificat de dificultat baixa (de 3 a 15 minuts) en menys de 2 segons (o sigui, a cop de vista). Em pregunto a quina velocitat l'hagués pogut fer essent un home, em pregunto com funcionaria el meu cervell tenint les capacitats superiors atribuides als homes...

Només una frase inacabada: si el cervell dels homes està millor preparat per jugar als escacs i la seva filla sempre el guanya...

diumenge, 19 d’octubre del 2008

El problema de la setmana - amb un màxim de 30 lletres

Aquesta setmana es tracta d'aconseguir un número, el més gran que es pugui. La única restricció és que, com a molt, s'han de fer servir 30 lletres (i cap dígit!!!)

Per exemple, es pot dir:

MIL -> 3 lletres
MIL ELEVAT A DEU -> 13 lletres

(I no s'hi val posar com a solució "el número més gran de tots", "infinit", "u dividit per zero", "limit de x quan x tendeix a infinit", "arc tangent de pi mitjos" i similars...) Intentaré contestar ràpid les possibles solucions que no doni per vàlides...

D'aquí a un parell de setmanes repartiré 39 puntets.

dimecres, 15 d’octubre del 2008

Crisi, falcons, coloms i alcohol

La crisi i la ESA: Després de la decepció personal que vaig tenir (ja fa temps...) quan vaig veure que el Terrestrial Planet Finder i el Darwin eren postposats indefinidament, veure aquesta notícia també m'entristeix. Reconec que sí, que si hi ha crisi potser cal utilitzar els diners per altres coses (i que, en el cas de TPF, sempre serà més important una aplicació militar que una de científica...). Però... bé, no és una cosa que em faci massa feliç.

Falcó o colom?: La teoria prové d'una afirmació de Darwin, que mai va poder saber com compaginar amb la seva teoria de l'evolució:
Aquél dispuesto a sacrificar su vida, antes que traicionar a sus camaradas, muy rara vez dejaría descendencia que heredase su noble disposición. Así pues, parece casi imposible que el número de los dotados con tales virtudes se incrementase por selección natural, es decir, por la supervivencia de los mejor adaptados.
Però existeix gent (i animals) així. Aleshores, com lliga tot plegat? L'explicació es pot trobar a la teoria de jocs, i en el fet que hi ha d'haver un equilibri entre els individus denominats falcó (que sempre ataquen) i els anomenats colom (que sempre es defensen i són nobles). L'augment en la proporció d'un dels dos grups provoca un augment de competència en aquest grup, que afavoreix l'altre, fins a tornar a l'equilibri.

Alcohol i volum cerebral Aquests científics que ho estudien tot, s'han dedicat a estudiar com afecta el consum d'alcohol al volum del cervell. I com afecta? Doncs segons aquest estudi, com més alcohol es consumeix, més disminueix el volum del cervell. I no faré cap comentari, no fos cas que em passés com a aquell que deia que els homes eren més intel.ligents que les dones perquè tenien el cervell més gran i que quan es va morir li van pesar el cervell... i era més petit que el d'una dona. Seria per beure massa alcohol?

PIKAIA

Jo no treballo amb algorismes genètics per resoldre problemes, però hi ha gent que sí. Així que quan trobo en un paper que utilitzen un programa lliure que resol algorismes genètics, el primer que faig és anar al google a veure si el puc baixar i provar-lo en el meu programa (de forma ràpida, sinó ja ho provaré algun altre dia que no tingui res a fer...)

El programa es diu PIKAIA, i jo tota convençuda que em trobaré, al primer resultat, el programa...

Però veig que el pikaia és un animal extingit (i jo sense saber-ho!)

Després, quan arribo a la pàgina que m'interessa veig que sí, que no és casual que tinguin el mateix nom.

També veig que és una rutina en fortran, i el meu optimitzador també és en fortran... Crec que no em costaria massa adaptar el meu programa a veure si em torna els mateixos resultats amb un algorisme genètic... Bé, aquí ho deixo, a veure si m'atreveixo.

Només que m'ha fet gràcia, això del pikaia :-D

diumenge, 12 d’octubre del 2008

El problema de la setmana - La ciutat amb més codi postal

Ejem... Ahir em vaig descuidar de clicar publicar i de donar els punts... Ara publico, ja donaré els punts de fa dues setmanes.

I com que m'agraden aquests problemes de buscar coses i dividir... Aquesta setmana es tracta de buscar un poble (o ciutat) que tingui un codi postal molt gran respecte al nom.

De què es tracta: de dividir el codi postal pel nombre de lletres de la població, i intentar trobar el més gran. Per exemple, Cartellà seria 17199/8 = 2149.875.

Si una població té més d'un codi, es pot escollir el més convenient (o sigui, el més gran).

I res, que repartiré els 38 puntets d'aquí a un parell de setmanes (més o menys...)

divendres, 10 d’octubre del 2008

Mira què he trobat!

Fa (gairebé) 4 anys, aquest blog va néixer com una cosa que em serviria per explicar al món les coses que anava trobant, les coses que em feien gràcia i que d'alguna manera havia d'explicar a algú, però que no trobava a qui explicar-les. Al cap de poc, vaig començar amb els problemes setmanals, i mica en mica, vaig anar perdent el (bon) costum de fer-ho. Una mica perquè hi ha moltes pàgines que fan el mateix, i totes ho feien millor. Una mica perquè feia una mica de mandra. Una mica... per un munt de coses.

Però he decidit, amb els 4 anys, reprendre aquesta faceta del blog, que ja fa temps que faig amb aquesta secció d'aquí a la dreta, "cosetes que m'han interessat". Però aquesta secció sovint està desactualitzada, amb coses de fa molt de temps. I és difícil de buscar-hi coses, i al cap i a la fi, això del blog va molt bé per poder buscar! Com ja vaig fer el blog aquell que parla de llibres...

Així que no m'enrotllo més. No puc fer res contra la mandra, i no puc prometre que me'n cansi, o que faci coses molt espaiades, però cada cop que tingui un parell o tres de coses interessants, vindran a parar aquí. Encara que només sigui posar un enllaç (tinc més idees, però ja veurem si les faig...) Però començo ja amb dues notícies dels últims dies que m'han cridat l'atenció (si, només un parell, és que tenia ganes de començar!!!). Com no podria ser de cap més manera!

L'atmòsfera de la Terra s'escapa a l'espai: No, no entreu tots en pànic, com si caiguéssin totes les borses!!! L'oxigen de la Terra es va escapant cap a l'espai, però en una proporció molt petita al que queda a la Terra. Concretament, s'escapen ions positius a través de les regions polars.

Escollir la millor imatge en raigs-X: Això no és una notícia, però és un anunci. Es tracta d'anar a la pàgina del telescopi Chandra i votar la imatge que us agradi més. Es pot votar fins a l'1 de desembre, i segons sembla, el 8 de desembre donaran a conèixer la imatge guanyadora amb una "fun interactive activity", que ara em té ben intrigada pel que serà... (serà qüestió de passar-se el 8 de desembre per la pàgina, a veure què hi ha...)

La bactèria del centre de la Terra: Bé, jo no en diria així, però es veu que han descobert una bactèria en una mina, a gairebé 3 quilòmetres de profunditat. Això és molt avall, i existint aquesta bactèria, qui ens assegura que al centre de la Terra no hi pot viure res? Ara en Dan o l'Anna em corregiran, perquè no tinc ni la més remota idea de tot això, però en fi! M'ha sorprès que només necessités matèria inorgànica per sobreviure (ni matèria orgànica, ni Sol, ni res!) i que si no té aliment (si s'alimenta de matèria inorgànica, com li pot faltar aliment? Suposo que s'alimenta només d'un tipus de matèria inorgànica!!!) es pot transformar en espora.

I aquí ho deixo. Quin post més llarg!!! :-P

dissabte, 4 d’octubre del 2008

El problema de la setmana - 13.75 o 14 i 1/4?

Aquesta setmana corregia uns exercicis. El resultat d'un exercici era 13.75. El meu problema és que miro el resultat, i hi veig que està bé: 13.75. Però després hi veig un igual, i a darrere de l'igual, 14 i 1/4. Jo penso que hi ha d'haver alguna cosa rara, i no en faig cas.

Però després de corregir el mateix error unes quantes vegades, em pregunto per què posen que 13.75 = 14 i 1/4. Més tard em ve la inspiració i no sé si riure o plorar.

Aquesta setmana el problema va d'inventiva. D'imaginar-se en quina situació algú pot dir (equivocant-se, és clar!) que 13.75 = 14 i 1/4.

D'aquí a dues setmanes donaré la resposta al que jo vaig deduir que passava... i repartiré 37 punts entre la gent que hagi donat respostes, premiant a les més enginyoses (o a qui trobi el que passava!!!)

Ho sé, potser és difícil, però... també hi ha l'inventiva, no?

diumenge, 28 de setembre del 2008

El problema de la setmana - sense repartir cap lletra

Aquesta setmana es tracta de trobar una paraula (en català, que estigui al diccionari, valen temps verbals), que sigui el més llarga possible, però que cap lletra no estigui repetida.

Repartiré 36 punts d'aquí a un parell de setmanes.

divendres, 26 de setembre del 2008

El Hubble a casa

He entrat a la pàgina del Hubble a veure si, ja que a mi no em va tocar la foto, a veure si podia veure a qui li va tocar.

La meva sorpresa ha sigut quan he trobat la forma de construir un Hubble a casa! Sí, sí, un de veritat!!! I a les fotos es veu molt xul.lo!

Hi ha tres possibles models, que es poden trobar aquí: un de "fàcil", un de mitjà (tot i que posa que el temps per fer-lo és entre 4 i 8 hores!!!) i un de difícil, que no m'he atrevit a mirar.

Segur que hi ha algun/a manetes a qui això pot interessar :-) Si jo en faig un i no queda massa lleig (ejem...) ja ho faré saber.

diumenge, 21 de setembre del 2008

El problema de la setmana - sense tenir 2 euros exactament

Tinc una quantitat de monedes a la butxaca, entre les que hi poden haver monedes d'1, 2, 5, 10, 20 i 50 cèntims i 1 i 2 euros. Amb les monedes, no puc pagar 2 euros exactament.

Quin és el màxim nombre de diners que puc tenir?

Repartiré 35 punts d'aquí a un parell de setmanes. Guanyarà qui doni la quantitat més gran de diners. A igualtat de diners, guanyarà qui digui la solució amb més monedes (ja que, amb més monedes, també és més difícil que no surti la quantitat de 2 euros...)

diumenge, 14 de setembre del 2008

El problema de la setmana - tornada al cole

Com que veig que els problemes aquests de trobar paraules aguditzen l'ingeni, i com que sembla que demà comença el cole per una gran majoria de gent...

Es tracta de trobar alguna cosa que es necessiti pel cole (una sola paraula), que tingui un percentatge de consonants el més alt possible. Per exemple, llapis (66.67%) guanyaria davant de goma (50%).

Repartiré 34 puntets d'aquí a un parell de setmanes.

dimecres, 10 de setembre del 2008

Qui és la teva família?

Per internet hi ha de tot, fins i tot una pàgina titulada The Mathematics Genealogy Project. A la que, òbviament, hi poses el nom d'un matemàtic i et retorna el seu pare matemàtic i els seus fills matemàtics (en cas de tenir-ne).

Ah! A mi, de moment, no m'hi busqueu pas...

diumenge, 7 de setembre del 2008

El problema de la setmana - continuar la successió

Vinga, que fa molt que no poso una successió :-) Es tracta de continuar la successió següent:

1, 1, 1, 3, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 3, 1, ...

En principi, si doneu un parell o tres de números més, ja n'hi ha prou. Si algú dóna algun resultat que sigui diferent del que jo crec, si el raona, doncs no hi haurà cap problema.

Repartiré 33 puntets, entre la gent que segueixi la successió, donant més punts a qui l'hagi resolt abans. Tancaré el problema d'aquí a un parell de setmanes.

diumenge, 31 d’agost del 2008

El problema de la setmana - el millor de les vacances

Les vacances tenen coses bones i dolentes. Però ara no mirarem quines són bones i quines dolentes...

Es tracta de buscar una cosa de les vacances (bona o dolenta, això que ho trii cadascú). Però, per embolicar-ho una mica més (sinó no seria jo), ha de ser una cosa que es pugui expressar en una paraula. I quina paraula guanya? Doncs la que llegida de dreta a esquerra (o sigui, al revés), sigui la última alfabèticament. Per exemple, FESTA guanyaria a PLATJA.

Repartiré 32 punts d'aquí a un parell de setmanes, cap al 13-14 de setembre.

diumenge, 24 d’agost del 2008

Règim?



Via The Scientific Cartoonist.

Qui sap resoldre la integral? Va, que no és difícil!!!

El problema de la setmana - 30 originals

Crec que ja és hora d'acabar les vacances de problemes :-) A veure si encara queda algú a l'altra banda...

Aquesta setmana he fet 1^2+2^2+3^2+4^2 anys (oh! Que gran que sóc! :-P) Però espero arribar, com a mínim, fins als (1+2+3+4)^2! Apa! Ja tinc una manera més d'explicar que (a+b)^2 no és a^2+b^2 (vale. Ho reconec. Estic fatal).

El problema de la setmana consisteix a expressar 30 d'alguna forma original (no s'hi val la meva manera, eh!!!) I com decidiré quina és la més original? Em sap greu, però us haureu de fiar del meu criteri totalment objectiu (...)

El premi seran 31 puntets que repartiré entre els participants, de la forma que em doni la gana (ho reconec, això dóna unes ganes de participar...)

Tancaré el problema com venia fent, d'aquí a un parell de setmanes, el cap de setmana del 6-7 de setembre.

dijous, 21 d’agost del 2008

El regalet de la Laia

La Laia m'ha fet un regalet per l'aniversari que m'ha fet molta il.lusió!

Un regalet tan maco i tan ben fet que l'he hagut de posar aquí perquè tothom el pugui veure i pugui dir-li a la Laia que és una artista!

Gràcies, Laia!!!

I will never be an old man. To me, old age is always 15 years older than I am.

Francis Bacon

dissabte, 9 d’agost del 2008

Kwec Kwec!

Avui porto un altre joc, el Duck. És un joc senzillet, amb uns ànecs que van apareixent per la pantalla, i no et diuen què has de fer. Tu ho has d'endevinar.

Són 25 nivells, que es fan en uns 10 minutets com a molt.

L'últim nivell, el 25, és un tres en ratlla. Em pensava que no seria capaç de guanyar-lo, però l'he acabat enganyant :-) És clar que s'ha deixat... només cal trobar l'estratègia del tres en ratlla que s'oblida!

És molt senzill, però per passar una estoneta...

dijous, 7 d’agost del 2008

La 100000ena volta del Hubble a la Terra

Fa 18 anys que el Hubble va ser llançat a l'espai.

Des de llavors, el Hubble ha anat completant una volta a la Terra cada 97 minuts. Això són més de 5000 voltes al voltant de la Terra cada any.

I ara, després de tot aquest temps, el proper dilluns (11 d'agost), el Hubble farà la seva 100 000 ena volta a la Terra.

A la pàgina del Hubble hi ha un comptador de les voltes que porta, i de la distància recorreguda.

Per cel.lebrar-ho, el Hubble sorteja 18 fotografies. Per allò de si a algú li interessa participar-hi... I si li toca, que avisi!!!

dilluns, 28 de juliol del 2008

diumenge, 27 de juliol del 2008

Chronotron

Chronotron és un joc molt interessant :-)

Tu ets un robot, que has d'aconseguir arribar a una certa caixa, que està per la pantalla. Per fer això, has de fer servir la màquina del temps.

Pots entrar tants cops com vulguis a la mateixa pantalla, i els teus previs jo poden fer el que vulguin per facilitar-te el camí. Només has d'anar amb compte amb una cosa: no pots crear paradoxes temporals! Si el teu primer jo podia saltar a un lloc, després d'haver passat el teu jo n, també ha de poder. Si no pot, entres en una paradoxa.

Els primers nivells són senzillets. Jo m'acabo d'encallar al nivell 30. Alguna idea? :-D

En qualsevol cas, és una bona idea per un joc.

dimecres, 9 de juliol del 2008

Massa vell?

No he pogut evitar posar-lo :-)



(Dedicat als que en fem 30 - o més...- aquest any...)

dissabte, 5 de juliol del 2008

El problema de les bales de canó

Comencem amb un problema senzill. Hem de guardar unes quantes bales de canó de la mateixa mida, i ho fem apilant-les les unes sobre les altres, de forma que a cada pis hi hagi un quadrat de bales, i a mida que anem pujant, cada cop el quadrat es vagi reduint, perquè posem les bales en els forats que queden entre cada quatre bales del pis inferior. Es tracta de trobar quantes bales hi ha en una piràmide de bales, on el quadrat de la base està format per n bales.

Aquest problema, que té fàcil solució, va ser proposat per Sir Walter Raleigh al seu assistent matemàtic, Thomas Harriot, que va trobar la solució sense massa problemes: 1/6 n(1 + n)(1 + 2n).

La pregunta, una mica més complicada, és: quin és el mínim valor que ha de tenir n perquè les bales de canó es puguin posar en un quadrat? O sigui, quin és el mínim valor de n que fa que 1/6 n(1 + n)(1 + 2n) sigui un quadrat perfecte? La solució es pot trobar per internet buscant pel problema de les bales de canó, i és n= 24, que dóna 4900 bales de canó (que aviat està dit).

Però la pregunta no queda aquí. Aquest és un problema relativament fàcil de resoldre, més que res perquè algun dia s'hi arriba. La pregunta és, a partir d'n=24 hi ha algun altre nombre que ho compleixi? I si és així, quin?

El problema és equivalent a trobar un nombre pel que 1+2^2+3^2+4^2+...+n^2 sigui un quadrat perfecte. Existeix? A part del 24, és clar!

La solució va ser demostrada per en Watson, 1918: la única solució és per n=24.

diumenge, 29 de juny del 2008

El problema de la setmana - Vacances d'estiu

Porto unes setmanes sense massa imaginació (suposo que ja es nota). I la calor encara fa que en tingui menys...

Així que faig vacances del problema de la setmana, com a mínim durant un parell de setmanetes o així. Fins que torni a venir la inspiració pels problemes.

Com a molt tard, tornaré al setembre amb nous problemes... Ara, a descansar!

dissabte, 28 de juny del 2008

Àlfil bo, àlfil dolent

Tinc una mica de fixació pel tema de l'àlfil bo i l'àlfil dolent. Tot i que aquests finals poden ser més interessants del que un es pot pensar. Alguns cops es guanyen, d'altres es fan taules, d'altres es perden (ja ho sé, amb això no he fet un gran descobriment).

Avui anem a veure un altre final, on un àlfil bo lluitarà contra un àlfil dolent. La partida es va jugar a escaquejant fa unes setmanes (mesos?). Va ser una partida una mica avorrida, que va acabar en el següent final:



El negre s'acaba de menjar una torre a f7, pensant que amb l'àlfil bo, podia canviar torres i el final s'acabaria guanyant. Acabarà guanyant el final, el negre? Seran taules? Quins trucs idearan una banda i l'altra per poder guanyar o fer taules? I, el més important de tot, quins plans es poden seguir per guanyar? I quins per fer taules? Realment les negres tenen suficient avantatge com per guanyar només per tenir un àlfil millor? O el bloqueig dels peons farà que sigui impossible entrar?

En una primera fase del final, el blanc intenta guanyar espai i bloquejar la posició, mentre que el negre intenta posar tots els peons a caselles blanques (i que el blanc els posi a les caselles negres).

29.h4 Ae7 30.b4 cxb4 31.cxb4 b5 32.g5 Rg6 33.Rg4 h5+ 34.gxh6 Rxh6 35.a3



El negre ha conseguit el seu propòsit, que era que tots els peons contraris estessin en caselles negres. Però ara està tot molt bloquejat i ha de trobar el camí per passar. Com que el flanc de dama està gairebé bloquejat del tot, la idea és intentar fer camí pel flanc de rei. El problema està en què com que l'àlfil pot perdre temps, passar el rei no serà senzill, si és que es pot aconseguir. Per aquesta raó, el rei negre canvia el peó que queda en el flanc de rei, per intentar fer espai per passar.

35. ... Rg6 36.Ae1 Rh6 37.Ag3 g5 38.Ae1 gxh4 39.Axh4



El negre ha aconseguit el seu objectiu de canviar el peó, i ara la idea serà intentar entrar pel flanc de rei, si és possible.

Està clar que en aquesta posició no es poden canviar els àlfils, si és que es vol guanyar. Després del canvi d'àlfils, el blanc té l'oposició i no s'hi val la maniobra 39. ... Axh4 40. Rxh4 Rg6 41. Rg4 a6 42. Rh4 Rf5, perquè aleshores el negre no només no guanya, sinó que perd: 43. Rh5 a5 44. bxa5 b4 45. a6 b3 46. a7 b2 47. a8=D b1=D 48. Df8 mat.

El següent pla de les negres és jugar a5. Per què jugar a5? Doncs per menjar el peó de b, i crear dues debilitats a la posició blanca: el peó de b4 i el peó d'e3, tots dos amb possibilitats de ser atacats per l'àlfil. Per aconseguir-ho, cal que l'àlfil negre estigui a la diagonal d8-h5 i que l'àlfil blanc no estigui a la diagonal e1-a5.


39. ... Af8 40.Ag5+ Rg6 41.Af4 Ae7 42.Ag3 Ad8 43.Ae1 Ae7 44.Af2 Ag5 45.Ag1 Ad8 46.Af2 a5



Finalment s'ha aconseguit jugar a5. Aquí cal tenir en compte que el blanc no pot menjar a a5, perquè això suposaria que el negre pogués entrar amb l'àlfil, que s'acabaria menjant tots els peons del blanc.

Donat que el blanc es menja el peó d'àlfil, ara les debilitats del blanc són els peons d'a3 i e3. El pla del negre és intentar amenaçar-los a tots dos, d'alguna forma. Però com que l'àlfil blanc, des de c1, defensa els peons fàcilment, la idea és canviar els peons del flanc de dama. Encara que el negre deixi de tenir la debilitat d'a3, això permet entrar a l'àlfil negre per darrere, a intentar menjar-se els peons del blanc.

Aquí no sé si el pla de b4 és el més correcte, però és la única forma d'entrar. Si no s'entra pel flanc de dama, és impossible entrar per cap més banda.

47.Ae1 axb4 48.Axb4 Ag5 49.Ad2 Ah6 50.Ac1 Af8 51.Ab2 Ae7 52.Ac1 b4 53.axb4 Axb4



Ara sembla que el rei negre podrà entrar i que es guanyarà, però...

54.Rf4 Rh5 55.Ab2 Ah4



Sorpresa!

56.Ba3!


I l'àlfil no es pot menjar. I, malgrat que el rei arriba a entrar i l'àlfil s'acaba menjant tots els peons, el rei blanc es menja també tots els peons negres, arribant a un final d'àlfil contra àlfil, o sigui, taules.

56. ... Ae1 57.Ae7+ Rh3 58.Rg5 Ah4+ 59.Rf4 Ag3+ 60.Rg5 Af2 61.Rf6 Axe3 62.Rxe6 Axd4 63.Rxd5 Axe5 64.Rxe4 taules

Com sempre, qualsevol comentari o correcció serà benvingut.

diumenge, 22 de juny del 2008

El problema de la setmana - paraules amb u

Com que sembla que últimament els problemes de trobar paraules són més ben acceptats que d'altres, avui un altre problema de trobar una paraula.

Es tracta de trobar una paraula (en català, al diccionari) que només tingui la vocal U. Per exemple, juny.

Guanyarà la paraula amb més lletres.

Tancaré el problema el 5-6 de juliol i repartiré 30 punts.

Realitat o (ciència)-ficció?

diumenge, 15 de juny del 2008

El problema de la setmana - Una frase

I aquesta setmana... el penjat!

Aquesta és una frase que m'agrada, i que aquesta setmana surt als meus mails (i l'esborraré a la resposta si algú que hi pugui participar m'envia un mail a aquella adreça...)

La frase en qüestió és:

___ ______ _ ____, ___ _______ _ ___.

Les normes són:

1. Cadascú pot dir una lletra cada dia (i defineixo dia des de les 10 del vespre d'un dia fins que digui quantes n'hi ha d'aquella lletra al dia següent).
2. Si s'encerta una lletra, el primer dia val 15 pel nombre de cops que surti aquella lletra, el segon dia 14 pel nombre de cops que surti la lletra, i així anar restant una unitat cada dia.
3. Si algú diu una lletra que no hi és, en comptes de sumar, es resta la puntuació del dia.
4. Encertar la frase val un bonus de 50 punts el primer dia, 45 el segon, 40 el tercer, i així anar restant.
5. En un mateix dia, només es pot dir o una lletra, o la solució de la frase.

Un cop es sàpiga la frase, repartiré 29 puntets més o menys proporcionalment als punts aconseguits en total.

divendres, 13 de juny del 2008

Arcs de sant Martí

La respuesta está en la geometría del arco. Cuando la luz rebota dentro de una gota de agua, la forma esférica de la gota hace que la luz salga fuertemente concentrada en una dirección especial. Cada gota emite de hecho un cono de luz brillante o, más bien, cada color de la luz forma su propio cono, y el ángulo del cono es ligeramente diferente para cada color. Cuando miramos un arco iris, nuestros ojos sólo detectan los conos que proceden de gotas de lluvia que están alieneadas en direcciones concretas, y para cada color dichas direcciones forman un círculo en el cielo. Así que vemos muchos círculos concéntricos, uno por cada color.
El arco iris que ves tú y el arco iris que veo yo están creados por gotas de lluvia diferentes. Nuestros ojos están en lugares diferentes, de modo que detectan conos diferentes, producidos por gotas diferentes.
Los arcos iris son personales.

Ian Stewart
Cartas a una joven matemática

dimecres, 11 de juny del 2008

Ciències... pures?

Per variar, els de l'xkcd s'han tornat a superar. No he pogut evitar posar-lo...



(clicant es veu millor)

I aquí hi ha l'original (per si algú vol passar-hi el ratolí per sobre i llegir el que diu...)

diumenge, 8 de juny del 2008

El problema de la setmana - amb totes les vocals

Tornem a les paraules, que feia temps que no en proposava cap. Es tracta de trobar una paraula (en català, que estigui al diccionari, pot ser un temps verbal) que contingui totes les vocals, i que sigui el més curta possible.

Tancaré el problema el 21-22 de juny i repartiré 28 punts.

diumenge, 1 de juny del 2008

El problema de la setmana - la millor estratègia

Aquest matí, a les ràpides de Cassà, ens podíem asseure al lloc que més ens agradés, sense tenir en compte l'ELO dels jugadors de cada equip. I què passava? Doncs que, com que la gent ja ens coneixem tots, "triàvem" amb qui volíem jugar. O sigui, que la major part de les vegades no ho féiem per guanyar, però sí perquè hi havia una amistat, o una cosa pendent amb algú. Quan hem jugat amb un dels equips en el que hi jugava una noia, el que normalment és el segon tauler m'ha dit: "Duel femení, no?" I bé, que he acabat jugant amb una de les noies a qui dono classe...

Doncs res, que aquesta setmana disposem de 4 jugadors, i tots els equips són iguals. Els podem enumerar, de més bo a més dolent, d'1 (el més bo) a 4 (el més dolent). Si un jugador juga amb algú que té el mateix número que ell, farà taules. Si un jugador juga amb algú que té un número més gran, guanyarà.

En quin ordre es posarien els jugadors, si no es sabés com està posat l'altre equip?

Si no voleu que es sàpiga quin és el vostre equip, me'l podeu enviar per mail.

Els punts van per matx, i el primer desempat és el particular (amb l'holandès). El segon desempat, l'olímpic. En cas de dubte, explico això del matx, de l'holandès i de l'olímpic...

Tancaré el problema el cap de setmana del 15 de juny i donaré 27 punts.

divendres, 30 de maig del 2008

Planarity

Un graf pla és un graf que es pot dibuixar sense que hi hagi cap parell d'arestes que es creuin.

Què passa quan algú sap això i li agrada fer jocs?

Doncs que apareix planarity, un joc on apareix un graf que conté més o menys vèrtexs depenent del nivell, que en principi és pla, i s'han de col.locar els vèrtexs de forma que se'n tingui una representació plana (vaja, que s'han de col.locar els vèrtexs de forma que no es creuin dues arestes).

Si algú aconsegueix passar del nivell 7 o 8, que avisi! Jo no tinc prou paciència...

Jeje... Nivell 9 completat!!!



I el 10 també :-) (i ja paro... que encara seré capaç de fer l'11...)

dimecres, 28 de maig del 2008

On és l'error?

Ja dóno la solució dient això, però aquest problema s'assembla molt al problema del cambrer i les monedes.

Situació: 3 professors a vigilar dues aules. Un examen que dura 2.5 hores.

Raonament: són 5 hores de vigilància. Hem de dividir 5 entre 3. Doncs... jo descanso la primera hora i vosaltres descanseu les altres (jo una, vosaltres, dues cada un).

Marxem. Ens dividim el que queda amb l'altre. Jo marxo a la part del mig, de forma que a mi em relleven, i jo he d'anar a rellevar a l'últim.

El que s'ha quedat, apareix uns 10 minuts més tard de l'hora que toca. Total, com que és el que descansa menys (una hora), s'ho pot permetre.

M'entretinc 5 minuts explicant-li el què. Trigo 5 minuts a arribar al despatx. I quan arribo al despatx m'adono que he de tornar a marxar al cap de 20 minuts, per ser a l'hora que he de ser a rellevar a l'últim.

I què es pot fer en 20 minuts? No dóna temps de fer res! Si et poses a fer alguna cosa, ja ho has de deixar només de començar. Així que escric això.

On és l'error?

(Jo ja sé on és l'error, me n'he adonat quan ens hem repartit el que quedava amb el que ara vaig a rellevar. Però és perquè no us la colin a vosaltres...)

dilluns, 26 de maig del 2008

I will derive



(em sembla que no cal dir res)

diumenge, 25 de maig del 2008

El problema de la setmana - 10=9?

No ho entenc. No sé què passa. Jo vaig fer el meu escrit, i vaig posar que l'animaló que havia trobat feia uns 10 quilos. El van traduir i va tornar a mi. Quan el vaig rebre, posava que l'animaló pesava uns 9 quilos i aquest era l'únic error de tot l'escrit.


Què va passar?

Jo tinc una resposta, però premiaré la resposta més original, que segur que supera a la meva, i de molt!

Tancaré el problema cap al 7 o 8 de juny i repartiré 26 punts.

dissabte, 24 de maig del 2008

Même pas peur

Genials, aquesta gent són genials!



Recomano mirar el vídeo fins al final. Al principi no saps què fan, després veus que està intentant fer un retrat del tal Cali. I et penses que... bé, fins que no veus el retrat final, et penses que li estan prenent el pèl.

Però després et queda cara de: genial, aquest tio és genial!!!

I també cara de: ostres, com és que no ho veia?

diumenge, 18 de maig del 2008

El problema de la setmana - màxim nombre de peces

Aquesta és una variació de l'últim problema de l'Enigmàlia. Es tracta de posar tantes peces com sigui possible en un tauler d'escacs, de forma que cap peça n'ataqui a cap altre.

Hi ha algunes condicions:

- El poden posar tantes peces del mateix tipus com es vulgui.
- No es poden posar peons ni a la vuitena fila, ni a la primera.
- La posició no té per què ser legal, hi poden haver tots els reis que es vulgui, des de 0 fins a...

Tancaré el problema el 31 de maig, i repartiré 25 punts.

dilluns, 12 de maig del 2008

Què serà?

Fa dies que la notícia corre per aquí i per allà. Bé, només fa 3 o 4 dies, però ja em té ben intrigada.

Es veu que el telescopi Chandra, que està trobant objectes molt antics, ha trobat una cosa a la nostra galaxia que fa més de 50 anys que es busca.

Ja són ganes de fer pensar a la gent... no ho podrien anunciar així, sense més, o al dia següent? No, han d'esperar una setmaneta!

Al primer enllaç hi ha un enllaç des d'on es podrà sentir l'anunci en directe. Això serà dimecres, crec que a les 7, hora catalana (si algú creu que estic equivocada, que avisi...) Serà el dimecres, a la 1 del migdia, hora UTC-4. Crec que això són 6 hores de diferència amb Catalunya...

(De pas, a aquesta hora estaré intentant fer entendre alguna cosa a algun alumne, així que no ho podré sentir... Si algú em vol enviar un sms perquè ho vegi just sortir de classe, li agrairé :-) És broma, eh! No estic tan malament!!! O sí...)

El problema de la setmana - estrelles brillants

I aquesta setmana... estrelles! Es tracta de buscar una estrella, comptar els caràcters que formen el seu nom, i dividir-ho per la seva magnitud aparent. Guanya el que obtingui el nombre més gran.

Per exemple, si no volgués guanyar i triés Arcturus, tindria una puntuació de 8/(-0.04) = -200, i només guanyaria a qui triés Alfa Centauri A.

Repartiré 24 punts i tancaré el problema el 24-25 de maig.

(Sóc conscient que en aquest problema, qui arribi abans té avantatge... però en fi...)

dijous, 8 de maig del 2008

Mat amb el rei

Avui, a casa d'en Dan, ha sortit el tema de fer mat fent una jugada de rei. El primer que penso, quan sento això de fer mat amb una jugada de rei, és en el problema aquell que es sol posar als nens, que està a la frontera entre els problemes d'escacs i els problemes d'enginy. La posició és la següent:



En aquesta posició, juguen les blanques i fan mat en una.

Com?

Doncs fent una jugada de rei. Concretament, enrocant-se llarg. Ningú ha dit que el blanc no es pugui enrocar! I l'enroc, tècnicament, és una jugada de rei.

Si no es vol fer el problema d'enginy, simplement es pot moure una de les torres de lloc:



Ara, el blanc, a part de poder fer mat amb l'enroc llarg, també fa mat amb Rd2.

Algú podrà pensar, però, que aquests són casos extrems i que aquests mats amb el rei no es donen a les partides. No?

Si he dit que quan sento "mat amb el rei", el primer que penso és en el problema d'enginy, la segona cosa en la que penso és en una partida de l'any 1912, entre l'Edward Lasker i en George Alan Thomas.

Compte! Aquest Lasker no era l'Emanuel Lasker, sinó un altre!

La partida, que és una petita joia, es pot veure, per exemple, aquí. La posició després de la desena jugada blanca és una de les posicions més famoses dels escacs.

I què té a veure això amb el mat amb el rei? Doncs que el mat es produeix a la jugada 18, amb Rd2! (Tot i que enrocar-se llarg també hagués valgut). Qui deia que aquestes coses no passaven a les partides reals?

I, per acabar, una anècdota sobre aquesta partida. Un dia vaig llegir no sé on (ai, aquestes fonts d'informació!), que un cop acabada la partida, l'Edward Lasker, que deuria estar bastant mosca de que hi hagués un altre Lasker molt millor, va anar a l'Emanuel, i li va dir que havia fet una gran partida, i que ni tan sols ell podria millorar la partida.

L'Emanuel Lasker li va respondre:

- Potser sí, però després de la jugada 14 del negre, tenies un mat en 3 que no has vist (el mat 15. g3+ Rf3 16. 0-0, i no es pot evitar 17. Ch2 mat). Tu l'has fet en 5.

De qualsevol manera, tot i ser un mat una mica més llarg, a mi m'agrada més el mat de l'Edward, a primera fila, i fent mat... amb el rei!

diumenge, 4 de maig del 2008

El problema de la setmana - l'últim número alfabèticament del revés

Em sembla que aquesta setmana torna a tocar paranoia... Es tracta de trobar un número, expressar-lo d'alguna forma, i que si llegim aquesta forma del revés, sigui la que estigui més enrere alfabèticament.

Millor vaig directament als exemples...

Jo, per exemple, puc escollir el nombre "dos al quadrat". Giraria, i em quedaria tardauqlasod. També podria escollir el "tres més u", i em quedaria usemsert. De les dues, guanyaria usemsert, perquè està més enrere alfabèticament.

Aquest cop repartiré 23 punts i tancaré el problema el 17 o 18 de maig.

diumenge, 27 d’abril del 2008

El problema de la setmana - amb 3 consonants

Volia posar una frase que es pogués construir només amb una consonant, però em sembla que em passaria... Es tracta de trobar una frase (o unes quantes frases seguides) que crein un text en català amb sentit, en el que només s'utilitzin 3 consonants.

Per exemple, la mama mou la mà i la cama, que té 3 consonants (l, m i c).

Guanyarà el text més llarg (el format per més lletres, independentment del nombre de paraules).

Aquesta setmana repartiré 22 punts i tancaré el problema el 10 o 11 de maig.

diumenge, 20 d’abril del 2008

El problema de la setmana - Sc

Potser se me'n va l'olla, però aquesta setmana només una pregunta. Els punts pel primer que la respongui correctament (i algun punt extra per alguna resposta raonada).

Què és Sc? I què hi té a veure amb el problema d'aquesta setmana?

dissabte, 19 d’abril del 2008

Jirovsky - Neidig

Donant volts per algunes bases, m'he trobat amb una partida, i una història, que m'han fet somriure.

La partida es va jugar entre un tal Milos Jirovsky (ull, que en aquella època tenia 2435 FIDE) i Stefan Neidig el 1998.



La partida acaba a la jugada 119 amb 119. Af3 mat. Però el resultat de la partida és... taules!!!

On és el problema?

A la jugada 68, el blanc es va menjar l'últim peó del negre. I, gràcies a la regla de les 50 jugades, a la jugada 118, si no hi ha mat, són taules.

El blanc va fer el mat una jugada massa tard...

Per estirar-se els cabells! I un 2435 FIDE... Això que em passi a mi, vale... però a ell...

-----------------------------

Per si a algú li interessa la partida:

Jirovsky,M (2435) - Neidig,S (2260) [E08]
Czech op Pardubice (7), 1998

1.Cf3 d5 2.c4 e6 3.g3 Cf6 4.Ag2 Ae7 5.0-0 0-0 6.d4 Cbd7 7.Dc2 c5 8.cxd5 Cxd5 9.Cc3 Cxc3 10.bxc3 cxd4 11.cxd4 Cb6 12.Ad2 Ad7 13.Aa5 Ac6 14.e3 Ad6 15.Tfc1 Tc8 16.De2 Ac7 17.Tab1 Ae4 18.Tb5 Ac6 19.Tbc5 De7 20.De1 Ad6 21.T5c2 Aa3 22.Axb6 axb6 23.Ta1 Aa4 24.Txc8 Txc8 25.Ce5 Ac2 26.De2 Dc7 27.Db5 f6 28.Cd7 Dc3 29.Tf1 Ad3 30.Dxb6 Axf1 31.Dxe6+ Rh8 32.Axf1 Dc6 33.Df7 Td8 34.Ah3 Dd6 35.Db3 b6 36.Db5 g6 37.Db3 Rg7 38.Da4 Ab2 39.Da7 Rh6 40.Cxb6 Axd4 41.exd4 Dxd4 42.a4 Dc5 43.Ad7 f5 44.Da6 f4 45.Db5 Dd4 46.h4 fxg3 47.Dg5+ Rg7 48.De7+ Rh6 49.De3+ Dxe3 50.fxe3 Rh5 51.a5 Tb8 52.e4 Tb7 53.e5 Ta7 54.e6 Txa5 55.e7 Te5 56.e8D Txe8 57.Axe8 Rxh4 58.Rg2 Rg4 59.Cd5 Rf5 60.Rxg3 Re5 61.Ce3 h5 62.Rh4 Rf4 63.Cd5+ Re5 64.Ce7 g5+ 65.Rxg5 h4 66.Cg6+ Re4 67.Ad7 h3 68.Axh3 Rd4 69.Rf4 Rd5 70.Af5 Rd4 71.Ce7 Rc4 72.Re5 Rc3 73.Rd5 Rb3 74.Rd4 Rb4 75.Ae6 Rb5 76.Ad5 Rb6 77.Rc4 Rc7 78.Rc5 Rd7 79.Cf5 Re8 80.Rd6 Rf8 81.Re6 Rg8 82.Rf6+ Rf8 83.Ac6 Rg8 84.Ce7+ Rf8 85.Cg6+ Rg8 86.Ad5+ Rh7 87.Ac4 Rh6 88.Ag8 Rh5 89.Ce5 Rh4 90.Rf5 Rg3 91.Ab3 Rf2 92.Rf4 Re2 93.Re4 Rd2 94.Rd4 Rc1 95.Rc3 Rb1 96.Cf3 Rc1 97.Cd4 Rb1 98.Cc2 Rc1 99.Aa2 Rd1 100.Cd4 Re1 101.Rd3 Rf2 102.Af7 Rg3 103.Re4 Rg4 104.Ce6 Rg3 105.Ah5 Rf2 106.Rf4 Rg2 107.Cg5 Rf2 108.Af3 Rf1 109.Re3 Re1 110.Ce6 Rf1 111.Cf4 Re1 112.Cd3+ Rf1 113.Rf4 Rg1 114.Rg3 Rf1 115.Ag4 Rg1 116.Ae2 Rh1 117.Cf4 Rg1 118.Ch3+ Rh1 119.Af3# ½-½

diumenge, 13 d’abril del 2008

Ronda 9

Aquest és un post que anirà augmentant durant la tarda.

16:23:

Resum de la ronda (hores aproximades):

9:30: Arribem i l'Olot té un jugador de menys. 1-0 a favor nostre :-)
10:30: En Pere signa l'1-0. En Rafa té peó de més, i l'Àlex, peça de més.
10:45: En Miki comença a tenir molta avantatge.
11:00: En Miki guanya. 2-0. La cosa comença a estar bé...
11:30: Em demanen taules. Les rebutjo. L'Àlex té torre de més, però en Toni té dos peons de menys, en Rafa sembla que perderà, i les partides dels dos Enrics estan molt embolicades. Sé què és jugar sota pressió i prefereixo forçar jo que no pas obligar a algú altre a guanyar.
11:40: Guanyen gairebé al mateix temps l'Enric Calpe i l'Àlex. Fa un parell de jugades que he rebutjat les taules. Les torno a demanar, així ja estarà. Fora pressió, i els altres que juguin.
13:00: Marxem d'Olot amb un 3-5 a favor nostre :-) Hem guanyat al campió!!!

16:28: Fa una bona estona que li dóno a l'F5 a veure què han fet el Pont i el Banyoles B. Depenent del resultat, pugem a preferent!!! Però encara sense notícies... Després poso alguna posició i el resultat final...

En aquests moments, la classificació està:
1. Olot B. Punts: 7. Desempat: 184.75.
2. Nosaltres!!! Punts: 6. Desempat: 147.
3. El Pont. Punts: 5.5. Desempat: 122.
4. Banyoles B. Punts: 5. Desempat: 99.5.
La resta d'equips no poden arribar a 6 punts. El Pont i el Banyoles estan amb una partida menys (la d'avui, a veure si posen el resultat!!!) Els dos primers pugen a preferent.

17:29:

M'informen que el Pont ha guanyat :-( Encara no és oficial, però m'he de creure a qui m'ho ha dit.

En fi, ara, l'any que ve, a intentar quedar primers!!!

17:56: Posició 1:



Del tercer tauler, jugada que no s'ha fet (bé, s'ha fet un parell de moviments més tard), però que és molt maca. Juguen negres i obtenen una gran avantatge.

18:18: Jo, com si no sabés res. Amb un resultat que acaba d'aparèixer, canvien els desempats (el Pont i el Banyoles segueixen amb una partida menys):

1. Olot B. Punts: 7. Desempat: 190.
2. Nosaltres!!! Punts: 6. Desempat: 151.75.
3. El Pont. Punts: 5.5. Desempat: 126.25.
4. Banyoles B. Punts: 5. Desempat: 103.25.

18:25: Posició 2:



Juguen blanques. És bona Axc4?

21:01:

Bé, ja és oficial. El Pont ha guanyat per 6 a 2 al Banyoles. És una pena el dia que vam perdre amb ells per la mínima després de tenir-ho guanyat.

Però bé, felicitats a l'Olot i al Pont, i nosaltres som tercers, esperarem a la promoció, a veure si el segon equip de Preferent puja a Segona Catalana... que llavors nosaltres pujaríem a preferent.

I sinó, com ja he dit: l'any que ve, sí!!! (Ja sembla el Barça, tema que millor no tocar...)

dissabte, 12 d’abril del 2008

El problema de la setmana - el més venut

Com ja vaig dir, ve sant Jordi, i aquesta setmana toca problema de predir...

Es tracta de predir el llibre (novel.la de ficció en català) més venut el dia de sant Jordi. Però, és clar, hi ha alguna norma...

1. Es pot triar un llibre en qualsevol moment, des d'avui, fins al dia 26 d'abril (si, he posat 26 d'abril).
2. Un cop triat un llibre en els comentaris, aquest llibre ja no es podrà canviar. Serà el llibre amb el que jugareu.
3. Si una altra persona ha triat un llibre abans, ningú més el pot triar.

Ara cadascú que trii si contestar aviat, contestar el dia 23 quan surtin les primeres llistes, esperar a que hagin sortit les llistes definitives...

Repartiré els 20 punts tenint en compte que, com més amunt es col.loqui el llibre escollit, més puntuació.

diumenge, 6 d’abril del 2008

Ronda 8

Sensació d'aquesta vuitena ronda.

A nivell d'equip: molt contenta, perquè hem guanyat i, a falta d'alguns resultats, anem tercers :-)

A nivell personal: bastant mosca. La persona que ha jugat amb mi s'ha dedicat a:
1. Trigar entre 10 minuts i un quart d'hora per jugada. Resultat: he perdut la concentració i cada cop que jugava no recordava totes les variants que havia pensat en la jugada anterior, amb la conseqüent pèrdua de temps per part meva. Feia molt que no arribava a la jugada 15 amb menys de tres quarts d'hora (cosa que no té comparació amb els 10 minuts de qui jugava amb mi).
2. Esperar a que el seu equip hagués perdut per, a la jugada 16, demanar taules. Quan ja només queda la nostra partida. Quan gairebé estem a l'obertura, i per tant, estem en més o menys igualtat.

I jo he decidit que no, que jugava. Encara que hi hagués mig equip contrari esperant per anar-se'n a dinar. Perquè això no es fa!

Però he acabat malament de temps. En un final en què em veia millor, però no veia el camí de guanyar, amb un rival que em demanava taules cada poc.

I al final les he fet. Final amb igualtat de peons. Jo cavall, ell àlfil, i jo tots els peons en color contrari a l'àlfil. Era difícil d'entrar, però el Fritz em dóna dos punts d'avantatge. I al final he fet el que ell volia. Em nego a posar un diagrama meu, que encara m'agafarà alguna cosa.

A canvi, poso diagrames del tauler 2. Una partida molt xul.la! Que, és clar, durant les primeres hores de partida, he pogut observar detingudament...

Posició 1: Juguen negres



Posició 2: Mateixa partida, una estona més tard. Tornen a jugar les negres:

El problema de la setmana - paraula més curta amb el màxim nombre de lletres

Tornem a jugar amb les paraules. En aquest cas, es tracta de buscar una paraula que tingui moltes lletres diferents. Guanya la paraula que té un nombre de lletres diferents més gran, i a igualtat de lletres, guanya la paraula més curta.

Per exemple,

CASA té 3 lletres diferents.
COTXE té 5 lletres diferents, i per tant guanya a casa.
MATGALA també té 5 lletres diferents, però perd davant de cotxe, perquè la paraula sencera té més lletres que la paraula cotxe.

Repartiré 19 punts i tancaré el problema el cap de setmana del 19-20 d'abril. Ui, i això em recorda que ve Sant Jordi i que el següent problema hauria de ser de llibres...

diumenge, 30 de març del 2008

Setena ronda

Després de gairebé un mes de "vacances", després de les eleccions i la Setmana Santa, torna el campionat per equips. I, la veritat, entre el canvi d'hora i tot, feia una mica de mandra haver-se d'aixecar aviat per anar a jugar... i això que jugàvem a casa i només tinc el club a 5 quilòmetres!

La notícia d'avui, pel que fa a mi, és que:
1. Ningú se m'ha deixat cap peça per segon cop en el campionat!
2. He sigut la primera d'acabar.
3. No he hagut de patir per fer el punt decisiu.
4. A sobre, ni he perdut, ni he fet taules.
5. Ah, i, el més important, l'equip ha guanyat!

Aclariment: és que amb els resultats tan bons que tinc (ai! I no sé pas com els puc tenir tan bons! Ja se m'acabarà la bona sort!) faig por i avui no he jugat perquè m'han plantat...

Així que avui no hi ha diagrames meus. Però la bona notícia és que, com que no he jugat, a part d'anar al cotxe a buscar coses per llegir, he vist les partides... i jo, mirant partides, sóc perillosa :-P Així que preveig un munt de diagrames de partides alienes...

Posició 1:

Comencem amb una posició facileta. Del tercer tauler. Juguen negres i guanyen (de fet, fan mat amb poques, o el blanc ha d'entregar-ho tot...) La interessant és la jugada que NO és escac :-)



Posició 2:



I ja estem al quart tauler. El negre acaba de jugar a5? El blanc juga sense pensar-s'ho massa Txa5, recuperant el peó. És la millor jugada del blanc? És una jugada bona? N'hi ha alguna de millor?

A vegades la diferència entre guanyar i perdre està no en trobar una jugada bona, sinó en trobar una jugada MILLOR (si la persona que juga amb nosaltres no es torna a equivocar més tard, és clar...)

Posició 3:



I seguim al tercer tauler. Juga el blanc... Quina és la millor jugada?

Posició 4:



I ja la última del tauler 4... Juguen negres, que tenen un peó de menys. Però els àlfils són de diferent color. Qui té avantatge? Quina és la millor jugada pel negre?

El negre ha jugat Re5. Per què és dolenta?

I aquí ho deixo, que ja he posat prou diagrames! :-)

El problema de la setmana - el cavall 5x5

Un cavall es mou per un tauler d'escacs 5x5. Les caselles del tauler estan numerades (fila-columna) de l'1 al 5, i el valor de cada casella és la suma de la fila i la columna. Així, essent una mica imaginatius, les caselles són:

6 7 8 9 10
5 6 7 8 9
4 5 6 7 8
3 4 5 6 7
2 3 4 5 6

El cavall comença en una de les caselles, i es va movent pel tauler, fins que no pot moure's a cap casella més. Aleshores es para, suma els nombres de totes les caselles per les que ha passat i divideix aquesta suma per la suma entre el nombre de caselles per les que ha passat més la puntuació de la casella més gran per la que ha passat i el resultat el multiplica pel nombre de caselles per les que ha passat.

Per exemple, si passa per (2,3), (4,4), (3,2) i (1,1), el total és (5+8+5+2)/(4+8)*4 = 6.67.

El cavall vol obtenir el màxim resultat possible...

Jo repartiré 18 punts entre tots els que ajudeu al cavall... I això serà cap al 12-13 d'abril.

El meme de Enjut@ Mojamut@



A través de l'Anna m'arriba el meme de de Enjut@ Mojamut@, que em sembla que... em sembla que no respondré massa bé...

Primer he d'escollir una imatge, però què voleu que us digui... com l'Anna, la perruca blava no m'agrada massa, i la foto també m'agrada més la de l'ET.

Anem pel meme...

Veu en off> Quantes hores al dia de mitjana passes connectada a Internet?
Enjut@>
No m'agrada la pregunta. Què vol dir, connectada a internet? Si sóc a classe i tinc l'ordenador engegat, compta com a connectada? Si no estic fent res amb l'ordenador, però estic al despatx, i sento el pip cada cop que arriba un mail, compta com a connectada? Perquè si és així, me n'hi passo moltes. Tot i que no diria que estic estrictament connectada a internet. Si només es compta la interacció directa, hores (així, en plural) em sembla massa...

Veu en Off> Quants comptes de correu tens?
Enjut@>
Quants en tinc o quants en faig servir? És que són d'ordres diferents :-P I tenir, el que es diu tenir, em sembla que no sabria dir quants en tinc :-)

Veu en off> A quantes xarxes socials et podem trobar?
Enjut@>
A més de les que jo sé. M'explico: de tant en tant m'arriba algun mail, ho provo, entro, em registro. I no hi torno a entrar mai més. Després em trobo gent que em diu que m'ha vist aquí o allà, o de tant en tant rebo algun mail d'alguna xarxa social i no recordo haver-m'hi apuntat... Però, de qualsevol manera, no en faig servir cap regularment, a no ser que l'anobii es consideri xarxa social. És que tampoc sé massa què vol dir...

Veu en off> Què t’agrada més per expressar-te el blog, el wiki, flickr o twiter?
Enjut@>
A veure qui és la guapa (és un meme per dones, no?) capaç de contestar aquest meme en wiki, flickr o twitter...

Veu en off> Quantes dones blocaires coneixes personalment?
Enjut@>
És impossible de saber. De tant en tant amb trobo amb el blog d'alguna coneguda, sobretot escaquistes. Com puc saber quantes de les dones que conec tenen blog? :-)

Veu en off> A quantes dones blocaires llegeixes habitualment?
Enjut@>
A unes quantes? :-) (el xafarderisme pot més que jo...)

Ah, sí! I ara ho he de passar a unes quantes noies. He anat a mirar les que resolen el problema de la setmana i m'he trobat a l'Anna, que és la que me l'ha passat, i a la Laia, que no li agradarà fer-lo. Així que tallo la cadena :-)

I fins aquí el meme. Mmmm... he contestat realment a alguna pregunta? :-P

diumenge, 23 de març del 2008

El problema de la setmana - primer amb lletres primeres

Aquesta setmana toca repartir 17 punts, nombre primer... I se me n'ha anat una mica l'olla amb els nombres primers.

Es tracta de trobar el nombre primer més gran que el nombre de lletres d'escriure el nombre en català sigui primer.

O sigui, el 2 serveix, perquè DOS té 3 lletres, que també és un nombre primer. Però el 3 no serveix, perquè malgrat ser primer, TRES té 4 lletres, que no és primer.

Tancaré el problema el 5-6 d'abril.

diumenge, 16 de març del 2008

El problema de la setmana - Setmana Santa

I ja som a Setmana Santa i aquesta setmana hi ha molta gent que pot marxar de vacances. Així que tornem a jugar amb els llocs. I, com que aquesta setmana hi ha molta gent que vol marxar de viatge...

Es tracta de trobar un lloc que es pugui definir amb 10 lletres exactament (o sigui, Austràlia no val, perquè són 9, i Nova Zelanda tampoc, perquè són 11) i que estigui el més lluny possible d'algun lloc proper, que li posarem... Girona.

Com es compta la distància? Doncs amb el google maps. Si jo dic, per exemple "el meu poble" (10 lletres), estic definint un lloc. Aleshores miro la distància i veig que són 8.5 Km.

Ah, però hi ha una "petita" dificultat afegida: no us podeu moure gaire lluny, tampoc. El google maps ha de poder trobar un itinerari entre Girona i el destí (per allò de que com que, amb sort, hi ha només una setmana de festa, tampoc es pot anar gaire lluny...)

Tancaré el problema el 29 o 30 de març i donaré 16 puntets.